TUV STEAM CONDENSING HEAT EXCHANGER MODEL SR-3/SR-8

HIGH-PERFORMANCE ATMOSPHERIC HEAT EXCHANGER FOR WASTE HEAT RECOVERY

Features

Atmospheric indirect heat exchanger for recovering heat energy from waste or flash steam from applications where the steam cannot otherwise be utilized.

- 1. Open to atmosphere system adds very little back pressure to steam using equipment (maximum 50 mm water head).
- 2. Achieves a more effective heat exchange than closed system heat exchangers.
- 3. Open to atmosphere system is free from the restrictions and regulations governing pressure vessels.
- 4. Compact, space-saving design.
- 5. Requires no electric power, providing very high economic efficiency.
- 6. Improves work environment by eliminating "clouds of steam" generated around the plant.

Specifications

Model		SR-3	SR-8			
Connection & Size (mm)	Steam Inlet	80 Flanged	150 Flanged			
	Condensate Outlet	50 Flanged	50 Flanged			
	Condensate Blow Valve	15 Screwed	25 Screwed			
	Cold Water Inlet	20 Screwed	40 Screwed			
	Hot Water Outlet	20 Screwed	40 Screwed			
	Exhaust	150 Pipe End (Duct nipple installable)	150 Pipe End (Duct nipple installable)			
Maximum Operating	Pressure (MPaG) PMO	Body (shell side): 0	Coil (tube side): 1.0			
Maximum Operating	Temperature (°C) TMO	up to 100				
Maximum Steam Flow	w Rate (kg/h)	300	800			
Maximum Heat Reco	very Capacity (MJ/h)	670	1,800			
Heat Transfer Surface	e Area (m²)	2.0	5.4			

Contact TLV for non-standard design specifications 1 MPa = 10.197 kg/cm² PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: Body: 0.05, coil: 2.0 Maximum Allowable Temperature (°C) TMA: Body: 158, coil: 180

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

No.	Description	Material	JIS	ASTM/AISI*	
1	Body	Stainless Steel	SUS304	AISI304	
2	Heat Transfer Coil	Stainless Steel	SUS304	AISI304	
3	Full-bore Ball Valve BV1	Cast Stainless Steel	—	A351 Gr. CF8	
4	Plug	Stainless Steel	SUS304	AISI304	
(5)	Nameplate	Stainless Steel	SUS304	AISI304	

* Equivalent

Dimensions

SR-3 / SR-8 (mm)										
Mod	lel	L1*	L2	Н	H1	H2	F	l 3		
SR	-3	370	150	1300	1280	1100	20	20		
SR	-8	420	170	1800	1790	1550	32			
Мос	Model	H ₄	H₅	φW₁	W2	W3*	Weight* (kg)			
							Empty	Full		
SR	-3	200	180	426	300	260	140	160		
SR	SR-8 350 30		300	528	350	310	250	250 280		
* Approximate										

Flanged connections are ASME Class 150 RF. Screwed connections are NPT except on access hole (Rc(PT) 2) Other standards available

Waste Heat Recovery

the relationship between the amount of steam passing through the heat exchanger and the outlet water temperature. Consult TLV if the feed water temperature is not around 20 °C. 2. When the outlet water

1. The graph to the left shows

temperature exceeds 95 °C. steam cannot be condensed and will be discharged from the exhaust outlet

Example: At the intersection "A" on the graph, 500 kg/h of waste steam is collected and 6 t/h of water is used for heat recovery.

- Moving left from this point reveals that hot water at 65 °C can be recovered with the SR-8.

- Moving up to point "B" reveals that 3.6 t/h of cold feed water will be required. If less is used, some waste steam will remain uncondensed.

Required Water Differential Pressure

Because the SR-3/SR-8 is an atmospheric indirect heat exchanger using stainless steel tubing, make sure the cold water pressure is high enough to maintain a differential pressure at least equal to the differential pressures indicated in the table below. However, the water pressure must not exceed 1.0 MPaG.

Water Quantity (t/h)		1	2	3	4	5	6	8	10	12	14
Min. Differential Pressure (MPa)	SR-3	0.03	0.11	0.23	0.40	0.62	—	—	—	—	—
	SR-8	_	_	0.03	0.05	0.07	0.10	0.17	0.27	0.38	0.60

Example: If 4 t/h water is used for heat recovery with an SR-8, differential pressure between the cold water inlet and the hot water outlet should be at least 0.05 MPa.

Manufacturer CO. LTD Kakogawa, Japan proved by LRQA Ltd. to ISO 9001/14001

https://www.tlv.com

(M)

Copyright © TLV

SDS M4800-04 Rev. 6/2018 Products for intended use only. Specifications subject to change without notice.